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Introduction � PDE

• PDE generalization of ODE

• in PDE (of evelution):

• unknown � function of time and space coordinates
• eq. contains ∂

∂t and ∂
∂x

• initial and boundary condition
• problems as e.g. vibrating string/membrane (compare to

oscillator � mass on a spring), heat transfer, ...

• Peter Fritzson's Modelica book[1]

• Levon Saldamli PhD thesis [2]

• extension � some weaknesses
• not supported in OM or other

We continue this work



Complexity of PDE

• solving PDE is more complicated than ODE

• di�culties grow with every dimension: ODE (0D) → 1D PDE
→ 2D PDE → 3D PDE → ???

• there is no suitable numerical method for all PDEs

• common approach � develop method for one particular
equation/problem

• no numerical library able to solve vast majority of PDEs (as is
dassl or IDA in ODE)

• Modelica tools solve enormous amount of ODE (DAE)
problems (would say almost any) � probably not possible in
PDE



Plan for my PhD

• proposed modi�cations and enhancements to Saldamli's
extension

future goals

• add support for particular 1D models, with �rst derivative

• concern on hyperbolic systems � time dependent, �wave-like�
problems, namely conservation laws

w̄t + F̄ (w̄)x = 0

• e.g. advection eq, string eq, Euler eq, arterial pulse waves

• other types of PDE: parabolic (time dependent, di�usion
problems), elliptic (time independent, potential problems)

• some of them also solvable some not, no guarantee for correct
solution



Extension
example � advection equation

• domain � omega

• �eld variable � u

• partial derivatives � der(u) � time, der(u,x) � space

• BC with region speci�er in

• annotation for number of nodes



MOL, implementation

• PDE → system of ODEs

• space dimension is discretized

• �eld variables → array

• space derivatives → di�erence

• will implement discretization module in FrontEnd

• resulting ODE system will be written in recent Modelica

• will be solved by rest of the curent compiler and runtime



Discretized (manually) advection eq.



BTCS di�erence scheme

combination of particular space di�erence and time solver →
concrete methods
in example above � central di�erence for space derivative

• when using explicit solver (time) � unstable ⇒using implicit
solver (eg. radau1 � implicit Euler)

• O(h) in time, O(h2 ) in space
• discontinuous solution → oscillations
• problematic parallelization
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lower space index � by discretization, upper time index � by solver
not any method implementable this way



Lax-Friedrichs (LF)

modi�ed central space di�erence + Euler time solver
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• also O(h) in time, O(h2 ) in space

• di�usive � doesn't oscillate

• explicit � suitable for parallelization



Time step � c� condition

hyperbolic problems, stable simulation ⇒ the CFL condition

• limits length of dt wrt. dx

λ
dt

dx
< c,

c .. constant speci�c to the used method
λ .. speed of waves (of sound) in the system

• in conservation laws � maximal eigenvalue of Jacobian

Evaluation of λ must be implemented.
Mechanism to control dt



Tests, advection eq, cos wave, BTCS scheme

ut + a · ux = 0

• IC shifts from left to right (a � speed) � known solution

N = 25, c� = 0.2 N = 100, c� = 0.2

Numerical convergence test:
N 25 50 100 200 400 800 1600

err 0.034875 0.016674 0.0090165 0.0048615 0.0015817 6.2515e-04 2.6352e-04

conv 1.06459 0.88696 0.89117 1.61993 1.33920 1.24629



Tests, advection eq, cos wave, LF scheme

N = 25, c� = 0.5 N = 100, c� = 0.5

Numerical convergence test:
N 25 50 100 200 400 800 1600

err 0.10452 0.074538 0.031533 0.021360 0.0098777 0.0050463 0.0022630

conv 0.48773 1.24111 0.56195 1.11266 0.96895 1.15699



Tests, advection eq, step IC

BTCS, N = 400, c� = 0.2 LF, N = 400, c� = 0.5



Riemann test
Euler equation of hydrodynamics, ideal gas
IC piecewise constant, one discontinuity

x ∈ (0.0, 1.0) x0 = 0.3 T = 0.2
%l = 1.0 ul = 0.75 pl = 1.0
%r = 0.125 ur = 0.0 pr = 0.1

LF, N = 1000, simulation fragile



Arterial pulse wave model

• 1D model of blood �ow in elastic artery (all quantities
assumed constant on cross section)

• artery described by

• A(x , t) .. cross section of vessel
• U(x , t) .. velocity of blood (average over the crossection)
• P(x , t) .. pressure

• left BC � blood �ow from heart (ODE model)

• pulse caused by the systole propagates along the artery



Conclusion

• PDE extension was studied and enhanced

• Suitable numerical methods were proposed and tested

• Discretization module in front end will be implemented



End

Thank you
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