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Introduction — PDE

PDE generalization of ODE
in PDE (of evelution):

unknown — function of time and space coordinates
) o

feq...contalns 5; and 5~ N

initial and boundary condition

problems as e.g. vibrating string/membrane (compare to

oscillator — mass on a spring), heat transfer, ...

Peter Fritzson's Modelica book[1]
Levon Saldamli PhD thesis [2]

e extension — some weaknesses
e not supported in OM or other

We continue this work



Complexity of PDE

e solving PDE is more complicated than ODE

o difficulties grow with every dimension: ODE (0D) — 1D PDE
— 2D PDE — 3D PDE — 777

e there is no suitable numerical method for all PDEs

e common approach — develop method for one particular
equation/problem

e no numerical library able to solve vast majority of PDEs (as is
dassl or IDA in ODE)

¢ Modelica tools solve enormous amount of ODE (DAE)
problems (would say almost any) — probably not possible in
PDE



Plan for my PhD

e proposed modifications and enhancements to Saldamli’s
extension
future goals
e add support for particular 1D models, with first derivative

e concern on hyperbolic systems — time dependent, "wave-like"
problems, namely conservation laws

we + F(W)x =0

e e.g. advection eq, string eq, Euler eq, arterial pulse waves

e other types of PDE: parabolic (time dependent, diffusion
problems), elliptic (time independent, potential problems)

e some of them also solvable some not, no guarantee for correct
solution




Extension &

example — advection equation

model advection "advection equation”
parameter Real L = 1; // length
parameter PDEDomains.DomainLineSegmentlD omega(l = L);
field Real u(domain = omega);
parameter Real c = 1;
initial equation
u = if omega.x<0.25 then cos(2*3.14*omega.x) else 0;

equation
der(u) + c*der(u,x) = 0; //by default in omega.interior
u=1 in omega.left;

annotation(experiment{GridNodes = 100));
end advection;

domain — omega

field variable — u

partial derivatives — der (u) — time, der(u,x) — space

BC with region specifier in

annotation for number of nodes



MOL, implementation

e PDE — system of ODEs
e space dimension is discretized
e field variables — array

e space derivatives — difference

e will implement discretization module in FrontEnd
e resulting ODE system will be written in recent Modelica

e will be solved by rest of the curent compiler and runtime



Discretized (manually) advection eq. &

model advectionDiscretized
J/ ut +ux=20

parameter Real L = 1;
constant Integer N = 100;
parameter Real dx

=L /J(N-1);
parameter Real[N] x = array(i * dx for 1 in 0:N - 1);
Real[N] u, u_x;
parameter Real c = 1;
initial equation
for 1 in 1:N loop
u[i] = if x[1]<0.25 then cos(2%3.14*x[1]) else 0;
end for;
equation
J//unused array elements, eqs. just for balanced system:
u_x[1] = 8; u_x[N] = 0;
for 1 in 2:N - 1 loop
J//discretization of spatial derivative:
u x[i] = (u[i + 1] - u[i - 1]) J (2*dx);
J// the equation:
der(u[i]) + c*u_x[1] = 0;
end for;
uf1] = 1; [/left BC
u[N] = 2 * u[N - 1] - u[N - 2]; //extrapolation in the last node
annotation(experiment(Interval = 0.002));
end advectionDiscretized;



BTCS difference scheme

combination of particular space difference and time solver —
concrete methods
in example above — central difference for space derivative
¢ when using explicit solver (time) — unstable =using implicit
solver (eg. radaul — implicit Euler)
e O(h) in time, O(h?) in space
e discontinuous solution — oscillations
e problematic parallelization
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lower space index — by discretization, upper time index — by solver
not any method implementable this way




Lax-Friedrichs (LF)

modified central space difference + Euler time solver
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e also O(h) in time, O(h?) in space
e diffusive — doesn’t oscillate

e explicit — suitable for parallelization



Time step — cfl condition

hyperbolic problems, stable simulation = the CFL condition

e limits length of dt wrt. dx
dt

)\$<C,

¢ .. constant specific to the used method
A .. speed of waves (of sound) in the system

e in conservation laws — maximal eigenvalue of Jacobian

Evaluation of A must be implemented.
Mechanism to control dt



Tests, advection eq, cos wave, BTCS scheme

ur+a-u,=20

e |C shifts from left to right (a — speed) — known solution
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N = 25, cfl = 0.2 N = 100, cfl = 0.2

Numerical convergence test:

N 25 50 100 200 400 800 1600
err 0.034875 0.016674 0.0090165 0.0048615 0.0015817 6.2515e-04 2.6352e-04
conv 1.06459 0.88696 0.89117 1.61993 1.33920 1.24629




Tests, advection eq, cos wave, LF scheme
! T ! N N — numerc
e \\ — e
o8 0s \\
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uu 02 0.4 0.6 08 —— 1 on 02 04 1
N =25, cfl =05 N = 100, cfl = 0.5
Numerical convergence test:
N 25 50 100 200 400 800 1600
err 0.10452 0.074538 0.031533 0.021360 0.0098777 0.0050463 0.0022630
conv 0.48773 1.24111 0.56195 1.11266 0.96895 1.15699




Tests, advection eq, step IC
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Riemann test

Euler equation of hydrodynamics, ideal gas
IC piecewise constant, one discontinuity

x €(0.0,1.0) x =03 T =02

o1=1.0 uy=075 p=1.0
or = 0.125 u=00 p =01

LF, N = 1000, simulation fragile




Arterial pulse wave model

e 1D model of blood flow in elastic artery (all quantities
assumed constant on cross section)

e artery described by

e A(x,t) .. cross section of vessel
e U(x,t) .. velocity of blood (average over the crossection)
e P(x,t) .. pressure

e left BC — blood flow from heart (ODE model)

e pulse caused by the systole propagates along the artery




Conclusion &

e PDE extension was studied and enhanced
e Suitable numerical methods were proposed and tested

e Discretization module in front end will be implemented



End

Thank you
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