
pelab1 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

EquationsEquations

pelab2 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Usage of EquationsUsage of Equations

In Modelica equations are used for many tasks
• The main usage of equations is to represent relations in

mathematical models.

• Assignment statements in conventional languages are
usually represented as equations in Modelica

• Attribute assignments are represented as equations

• Connections between objects generate equations

pelab3 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Equation CategoriesEquation Categories

Equations in Modelica can informally be classified
into three different categories
• Normal equations (e.g., expr1 = expr2) occurring in

equation sections, including connect equations and other
equation types of special syntactic form

• Declaration equations, (e.g., Real x = 2.0) which are part of
variable, parameter, or constant declarations

• Modifier equations, (e.g. x(unit="V"))which are commonly
used to modify attributes of classes.

pelab4 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Constraining Rules for EquationsConstraining Rules for Equations

Single Assignment Rule
The total number of “equations” is identical to the total number of
“unknown” variables to be solved for

Synchronous Data Flow Principle
• All variables keep their actual values until these values are explicitly

changed
• At every point in time, during “continuous integration” and at event

instants, the active equations express relations between variables which
have to be fulfilled concurrently
Equations are not active if the corresponding if-branch or when-equation
in which the equation is present is not active because the corresponding
branch condition currently evaluates to false

• Computation and communication at an event instant does not take time

pelab5 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Declaration EquationsDeclaration Equations

constant Integer one = 1;
parameter Real mass = 22.5;

It is also possible to specify a declaration
equation for a normal non-constant variable:

Real speed = 72.4;

model MoonLanding
parameter Real force1 = 36350;
parameter Real force2 = 1308;
parameter Real thrustEndTime = 210;
parameter Real thrustDecreaseTime = 43.2;
Rocket apollo(name="apollo13", mass(start=1038.358));
CelestialBody moon(mass=7.382e22,radius=1.738e6,name="moon");

equation
apollo.thrust = if (time<thrustDecreaseTime) then force1

else if (time<thrustEndTime) then force2
else 0;

apollo.gravity=moon.g*moon.mass/(apollo.altitude+moon.radius)^2;
end Landing;

declaration
equations

Declaration equations:

pelab6 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Modifier EquationsModifier Equations
Modifier equations occur for example in a variable declaration when there
is a need to modify the default value of an attribute of the variable
A common usage is modifier equations for the start attribute of variables
Real speed(start=72.4);

Modifier equations also occur in type definitions:
type Voltage = Real(unit="V", min=-220.0, max=220.0);

model MoonLanding
parameter Real force1 = 36350;
parameter Real force2 = 1308;
parameter Real thrustEndTime = 210;
parameter Real thrustDecreaseTime = 43.2;
Rocket apollo(name="apollo13", mass(start=1038.358));
CelestialBody moon(mass=7.382e22,radius=1.738e6,name="moon");

equation
apollo.thrust = if (time<thrustDecreaseTime) then force1

else if (time<thrustEndTime) then force2
else 0;

apollo.gravity=moon.g*moon.mass/(apollo.altitude+moon.radius)^2;
end Landing;

modifier
equations

pelab7 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Kinds of Normal Equations in Equation Kinds of Normal Equations in Equation
SectionsSections

• equality equations
• connect equations
• assert and terminate
• reinit model MoonLanding

parameter Real force1 = 36350;
parameter Real force2 = 1308;
parameter Real thrustEndTime = 210;
parameter Real thrustDecreaseTime = 43.2;
Rocket apollo(name="apollo13", mass(start=1038.358));
CelestialBody moon(mass=7.382e22,radius=1.738e6,name="moon");

equation
if (time<thrustDecreaseTime) then
apollo.thrust = force1;

elseif (time<thrustEndTime) then
apollo.thrust = force2;

else
apollo.thrust = 0;

end if;
apollo.gravity=moon.g*moon.mass/(apollo.altitude+moon.radius)^2;

end Landing;

conditional
if-equation

equality
equation

• repetitive equation structures with for-equations
• conditional equations with if-equations
• conditional equations with when-equations

Kinds of equations that can be present in equation sections:

pelab8 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Equality EquationsEquality Equations

expr1 = expr2:
(out1, out2, out3,...) = function_name(in_expr1, in_expr2, ...);

class EqualityEquations
Real x,y,z;

equation
(x, y, z) = f(1.0, 2.0); // Correct!
(x+1, 3.0, z/y) = f(1.0, 2.0); // Illegal!

// Not a list of variables
// on the left-hand side

end EqualityEquations;

simple equality
equation

pelab9 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Consider the following simple example with a for-equation:

Repetitive EquationsRepetitive Equations

for <iteration-variable> in <iteration-set-expression> loop
<equation1>
<equation2>
...

end for;

The syntactic form of a for-equation is as follows:

class FiveEquations
Real[5] x;

equation
for i in 1:5 loop
x[i] = i+1;

end for;
end FiveEquations;

class FiveEquationsUnrolled
Real[5] x;

equation
x[1] = 2;
x[2] = 3;
x[3] = 4;
x[4] = 5;
x[5] = 6;

end FiveEquationsUnrolled;

Both classes have
equivalent behavior!

In the class on the right the for-equation
has been unrolled into five simple equations

pelab10 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

connectconnect--equationsequations
In Modelica connect-equations are used to establish
connections between components via connectors

connect(connector1,connector2)

Repetitive connect-equations
class RegComponent
Component components[n];

equation
for i in 1:n-1 loop
connect(components[i].outlet,components[i+1].inlet);

end for;
end RegComponent;

pelab11 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Conditional Equations: Conditional Equations: ifif--equationsequations
if <condition> then

<equations>
elseif <condition> then

<equations>
else

<equations>
end if;

if-equations for which the conditions have higher
variability than constant or parameter must include an
else-part

Each then-, elseif-, and else-branch must have the
same number of equations

model MoonLanding
parameter Real force1 = 36350;
...
Rocket apollo(name="apollo13", mass(start=1038.358));
CelestialBody moon(mass=7.382e22,radius=1.738e6,name="moon");

equation
if (time<thrustDecreaseTime) then
apollo.thrust = force1;

elseif (time<thrustEndTime) then
apollo.thrust = force2;

else
apollo.thrust = 0;

end if;
apollo.gravity=moon.g*moon.mass/(apollo.altitude+moon.radius)^2;

end Landing;

pelab12 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Conditional Equations:Conditional Equations: whenwhen--equationsequations

Events are ordered in time and form an event history:

time
event 1 event 2 event 3

• An event is a point in time that is instantaneous, i.e., has zero duration
• An event condition switches from false to true in order for the event to

take place

when <conditions> then
<equations>

end when;

<equations> in when-equations are instantaneous equations that are
active at events when <conditions> become true

when x > 2 then
y1 = sin(x);
y3 = 2*x + y1+y2;

end when;

pelab13 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Conditional Equations:Conditional Equations: whenwhen--equations cont'equations cont'
when <conditions> then

<equations>
end when;

when-equations are used to express
instantaneous equations that are only
valid (become active) at events, e.g. at
discontinuities or when certain conditions
become true

when x > 2 then
y1 = sin(x);
y3 = 2*x + y1+y2;

end when;

when {x > 2, sample(0,2), x < 5} then
y1 = sin(x);
y3 = 2*x + y1+y2;

end when;

when initial() then
... // Equations to be activated at the beginning of a simulation

end when;
...
when terminal() then
... // Equations to be activated at the end of a simulation

end when;

pelab14 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Restrictions on Restrictions on whenwhen--equationsequations
Form restriction

model WhenNotValid
Real x, y;

equation
x + y = 5;
when sample(0,2) then
2*x + y = 7;
// Error: not valid Modelica

end when;
end WhenNotValid;

model WhenValidResult
Real x,y;

equation
x + y = 5; // Equation to be used to compute x.
when sample(0,2) then
y = 7 - 2*x; // Correct, y is a result variable from the when!

end when;
end WhenValidResult;

Modelica restricts the allowed equations
within a when-equation to: variable =
expression, if-equations, for-equations,...
In the WhenNotValid model when the
equations within the when-equation are
not active it is not clear which variable,
either x or y, that is a “result” from the
when-equation to keep constant outside
the when-equation.

A corrected version appears in the class WhenValidResult below

pelab15 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Restriction on nested when-equations

Restrictions on Restrictions on whenwhen--equations contequations cont’’

model ErrorNestedWhen
Real x,y1,y2;

equation
when x > 2 then
when y1 > 3 then // Error!
y2 = sin(x); // when-equations

end when; // should not be nested
end when;

end ErrorNestedWhen;

when-equations cannot be nested!

pelab16 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Restrictions on Restrictions on whenwhen--equations contequations cont’’

A conflict between the equations will occur if both
conditions would become true at the same time instant

model DoubleWhenConflict
Boolean close; // Error: close defined by two equations!

equation
...
when condition1 then
close = true; // First equation
end when;
...
when condition2 then
close = false; //Second equation

end when;
end DoubleWhenConflict

Single assignment rule: same variable may not be
defined in several when-equations.

pelab17 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Restrictions on Restrictions on whenwhen--equations contequations cont’’

model DoubleWhenConflictResolved
Boolean close;

equation
...
when condition1 then
close = true; // First equation has higher priority!

elsewhen condition2 then
close = false; //Second equation

end when;
end DoubleWhenConflictResolved

Solution to assignment conflict between equations in
independent when-equations:
• Use elsewhen to give higher priority to the first when-equation

pelab18 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Restrictions on Restrictions on whenwhen--equations contequations cont’’

model VectorWhen
Boolean close;

equation
...
when {condition1,condition2} then
close = true;

end when;
end DoubleWhenConflict

The equations within a when-equation are activated when
any of the elements of the vector expression becomes true

Vector expressions

pelab19 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

assertassert--equationsequations
assert(assert-expression, message-string)

assert is a predefined function for giving error messages
taking a Boolean condition and a string as an argument

The intention behind assert is to provide a convenient
means for specifying checks on model validity within a model

class AssertTest
parameter Real lowlimit = -5;
parameter Real highlimit = 5;
Real x;

equation
assert(x >= lowlimit and x <= highlimit,

"Variable x out of limit");
end AssertTest;

pelab20 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

terminateterminate--equationsequations

The terminate-equation successfully terminates the
current simulation, i.e. no error condition is indicated

model MoonLanding
parameter Real force1 = 36350;
parameter Real force2 = 1308;
parameter Real thrustEndTime = 210;
parameter Real thrustDecreaseTime = 43.2;
Rocket apollo(name="apollo13", mass(start=1038.358));
CelestialBody moon(mass=7.382e22,radius=1.738e6,name="moon");

equation
apollo.thrust = if (time<thrustDecreaseTime) then force1

else if (time<thrustEndTime) then force2
else 0;

apollo.gravity = moon.g * moon.mass /(apollo.height + moon.radius)^2;
when apollo.height < 0 then // termination condition
terminate("The moon lander touches the ground of the moon");

end when;
end MoonLanding;

